EKS

Amazon Elastic Kubernetes Service (EKS) is a managed Kubernetes service that simplifies the deployment, management, and scaling of containerized applications using Kubernetes on AWS.

Key Features

Managed Control Plane

  • Fully managed, highly available Kubernetes control plane

  • Automated version updates and patching

  • Integrated with AWS services

  • Multi-AZ deployment for high availability

Node Types

  1. Managed Node Groups

# Example managed node group configuration
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
  name: example-cluster
  region: us-west-2
managedNodeGroups:
  - name: managed-ng-1
    instanceType: m5.large
    minSize: 2
    maxSize: 5
    desiredCapacity: 3
  1. Self-Managed Nodes

  • Custom AMIs

  • Specialized hardware requirements

  • Specific security requirements

  1. Fargate Profiles

# Example Fargate profile
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
  name: example-cluster
fargateProfiles:
  - name: profile-1
    selectors:
      - namespace: backend
        labels:
          env: prod

Security Features

Integration with AWS IAM

  • Pod IAM roles

  • IRSA (IAM Roles for Service Accounts)

  • Cluster authentication

# Configure kubectl
aws eks update-kubeconfig --name cluster-name --region region-code

Network Security

  • VPC integration

  • Security groups

  • Network policies

  • AWS Shield integration

Scaling & High Availability

Cluster Autoscaling

# Example Cluster Autoscaler configuration
apiVersion: apps/v1
kind: Deployment
metadata:
  name: cluster-autoscaler
spec:
  replicas: 1
  selector:
    matchLabels:
      app: cluster-autoscaler
  template:
    metadata:
      labels:
        app: cluster-autoscaler
    spec:
      containers:
        - image: k8s.gcr.io/autoscaling/cluster-autoscaler:v1.21.0
          name: cluster-autoscaler

Load Balancing

  • ALB/NLB integration

  • Automatic scaling

  • SSL/TLS termination

Monitoring & Logging

  • CloudWatch integration

  • Container Insights

  • Prometheus/Grafana support

  • FluentBit for logging

Cost Optimization

  • Spot instance support

  • Fargate for serverless

  • Resource quotas

  • Cost allocation tags

Best Practices

  1. Security

    • Use IRSA for pod permissions

    • Implement network policies

    • Regular security updates

  2. Reliability

    • Multi-AZ deployment

    • Node group distribution

    • Backup and DR planning

  3. Performance

    • Right-size nodes

    • Use cluster autoscaling

    • Implement horizontal pod autoscaling

Common Use Cases

  1. Microservices Architecture

  2. CI/CD Pipelines

  3. Machine Learning Workloads

  4. Batch Processing

  5. Edge Computing

Last updated

Was this helpful?