Understanding Regression Algorithms in Machine Learning

Introduction to Regression

Regression is a supervised learning technique that predicts continuous numerical values by understanding relationships between variables in a dataset. Unlike classification, which predicts categories, regression predicts quantities.

Types of Regression

1. Simple Linear Regression

  • Definition: Predicts a dependent variable based on a single independent variable

  • Mathematical Form: Y = mx + b

    • Y: Dependent variable (output)

    • x: Independent variable (input)

    • m: Coefficient (slope)

    • b: Intercept

  • Example: Real Estate Price Prediction

    • Input: House square footage

    • Output: House price

2. Multiple Linear Regression

  • Definition: Predicts dependent variable based on multiple independent variables

  • Mathematical Form: Y = m₁x₁ + m₂x₂ + ... + mₙxₙ + b

  • Real Estate Example Features:

    • Square footage

    • Number of bathrooms

    • Number of bedrooms

    • Year built

    • Location

3. Polynomial Regression

  • Definition: Handles non-linear relationships between variables

  • Mathematical Form: Y = m₁x₁² + m₂x₂ + b

  • Use Case: When relationship is exponential or non-linear

    • Example: House price increasing exponentially with number of bedrooms

Regression vs. Classification

Aspect
Regression
Classification

Objective

Predicts continuous values

Predicts categories/classes

Output Type

Quantitative (numerical)

Categorical (discrete)

Evaluation Metrics

MSE, RMSE, R-squared

Accuracy, Precision, Recall

Practical Implementation: Linear Regression Example

Setup and Data Preparation

# Import required libraries
import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

# Read the dataset
df = pd.read_csv('employee.csv')

Data Exploration

# Select features for analysis
X = df[['age']]  # Independent variable
y = df['salary']  # Dependent variable

# Create and train the model
model = LinearRegression()
model.fit(X, y)

# Print model parameters
print(f"Intercept: {model.intercept_:.2f}")
print(f"Coefficient: {model.coef_[0]:.2f}")

Visualization

# Plot the regression line
plt.figure(figsize=(10, 6))
plt.scatter(X, y, color='blue', alpha=0.5)
plt.plot(X, model.predict(X), color='red', linewidth=2)
plt.xlabel('Age')
plt.ylabel('Salary')
plt.title('Age vs Salary Linear Regression')
plt.grid(True)
plt.show()

Making Predictions

# Example prediction
age_test = [[35]]
predicted_salary = model.predict(age_test)
print(f"Predicted salary for age 35: ${predicted_salary[0]:,.2f}")

Best Practices in Regression

1. Data Preparation

  • Check for missing values

  • Handle outliers

  • Normalize/standardize features if needed

  • Split data into training and testing sets

2. Model Selection

  • Consider relationship type (linear vs non-linear)

  • Evaluate complexity needs

  • Account for number of features

3. Model Evaluation

  • Use appropriate metrics:

    • Mean Squared Error (MSE)

    • Root Mean Squared Error (RMSE)

    • R-squared (R²)

  • Validate assumptions:

    • Linearity

    • Independence

    • Homoscedasticity

    • Normality

4. Common Pitfalls to Avoid

  • Overfitting

  • Multicollinearity in multiple regression

  • Extrapolation beyond data range

  • Ignoring outliers

Advanced Considerations

  1. Feature Engineering

  2. Regularization Techniques

  3. Cross-Validation

  4. Hyperparameter Tuning

Last updated

Was this helpful?