Data Migration Strategy
Document ID: GP-MIG-2025-001
Document Control
Revision History and Approval Log
0.1
2025-01-10
[Author Name]
Initial draft - Basic migration strategy outline
Low
Pending (@arch_lead)
Pending (@tech_lead)
Draft
0.2
2025-01-12
[Author Name]
Added detailed component diagrams and data flow
Low
Approved (@arch_lead) 2025-01-13
Pending (@tech_lead)
In Review
0.3
2025-01-14
[Author Name]
Updated security protocols and added rollback procedures
Medium
Pending (@arch_lead)
Pending (@tech_lead)
In Review
1.0
2025-01-18
[Author Name]
Production release candidate - Complete implementation guide
Medium
Pending (@arch_lead)
Pending (@tech_lead)
Awaiting Approval
Approval Requirements
Architect review required for: architecture design, system integration, performance considerations, scalability strategy, security architecture, risk assessment
Tech Anchor review required for: implementation details, code standards, testing strategy, deployment procedures, monitoring setup, operational considerations
Document Information
Classification: Confidential
Last Updated: January 18, 2025
Document Owner: [Author Name], Platform Migration Team
Key Contacts:
Lead Architect: [Name] (@arch_lead)
Technical Anchor: [Name] (@tech_lead)
Overview
This document provides technical implementation details for migrating XXX from Legacy to Modern platform. The migration involves three primary synchronization strategies: One-time migration, CDC (Change Data Capture), and programmatic synchronization.
1. Prerequisites
Access to both Legacy and Modern environments
AWS DMS configured for data replication
ACL service credentials
Database access to Legacy systems
2. Infrastructure Setup
2.1 Technical Decisions Summary
Key Architectural Decisions
Auditing data Call Implementation
Must be asynchronous to prevent latency issues
Using temporary ACL service (temporary solution)
Will be decommissioned after modernization
Data Storage Strategy
All non-PII partner data will be stored in modern platform
Using JSONB in PostgreSQL for flexible data storage
Separate table structure for transactional vs. analytical data
Legacy System Integration
PAN status/expiry and token data accessed via token lookup service
OB indicator programmatically synced in temp and provisioning device tables
Duplicate provisioning risk accepted and tracked by product team
Event Management
ODIs events required for portal status history
WebSphere MQ integration for event publishing
Event flow documentation pending from technical team
2.2 Database Configuration
-- Legacy NWS Schema Update
ALTER TABLE provision_status
ADD COLUMN sync_status VARCHAR(20),
ADD COLUMN last_sync_timestamp TIMESTAMP;
-- Modern Platform Schema - Core Tables
CREATE TABLE token_status (
token_id VARCHAR(64) PRIMARY KEY,
status VARCHAR(20),
last_updated TIMESTAMP,
sync_status VARCHAR(20)
);
2.2 Service Configuration
# app-ddx-trdc-google-hce Configuration
acl:
sync:
batch-size: 100
retry-attempts: 3
timeout: 5s
endpoints:
nws: ${NWS_ENDPOINT}
ods: ${ODS_ENDPOINT}
3. Implementation Steps
3.1 Asynchronous Processing Implementation
// Async DS Call Handler
async function handleDSCall(requestData) {
const eventId = generateEventId();
await publishToEventQueue({
eventId,
type: 'DS_PROVISION_REQUEST',
data: requestData,
timestamp: new Date().toISOString()
});
return {
requestId: eventId,
status: 'ACCEPTED'
};
}
// Partner Data Storage Handler
async function storePartnerData(partnerData) {
const sanitizedData = removePIIData(partnerData);
await db.query(`
INSERT INTO partner_data (partner_id, data, metadata)
VALUES ($1, $2, $3)
`, [partnerData.partnerId, sanitizedData, extractMetadata(partnerData)]);
}
3.2 Event Management
3.1 Token System Integration
Configure Token System connection:
const tokenConfig = {
endpoint: process.env.TOKEN_SYSTEM_ENDPOINT,
timeout: 5000,
retryAttempts: 3,
batchSize: 50
};
Implement token status synchronization:
async function syncTokenStatus(tokenId) {
try {
const tokenStatus = await TokenSystem.getStatus(tokenId);
await Promise.all([
syncToNWS(tokenStatus),
syncToODS(tokenStatus)
]);
await updateSyncStatus(tokenId, 'COMPLETED');
} catch (error) {
await handleSyncError(tokenId, error);
}
}
3.2 Provision Status Management
Implement status transition logic:
const VALID_TRANSITIONS = {
'RECEIVED': ['PROCESSING', 'FAILED'],
'PROCESSING': ['COMPLETED', 'FAILED'],
'COMPLETED': ['VERIFIED'],
'FAILED': ['RECEIVED'],
'VERIFIED': ['ELIGIBLE'],
'ELIGIBLE': []
};
function validateTransition(currentStatus, newStatus) {
return VALID_TRANSITIONS[currentStatus]?.includes(newStatus) ?? false;
}
Status synchronization implementation:
async function syncProvisionStatus(provisionId) {
const lockKey = `provision_lock_${provisionId}`;
const lock = await acquireLock(lockKey);
try {
const status = await getProvisionStatus(provisionId);
await syncToLegacySystem(status);
await updateSyncMetadata(provisionId);
} finally {
await releaseLock(lock);
}
}
3.3 Error Handling and Retry Logic
class SyncError extends Error {
constructor(message, retryable = true) {
super(message);
this.retryable = retryable;
}
}
async function retryWithBackoff(fn, maxAttempts = 3) {
for (let attempt = 1; attempt <= maxAttempts; attempt++) {
try {
return await fn();
} catch (error) {
if (!error.retryable || attempt === maxAttempts) throw error;
await sleep(Math.pow(2, attempt) * 1000);
}
}
}
4. Monitoring and Logging
4.1 Metrics Configuration
const metrics = {
syncLatency: new Histogram({
name: 'sync_latency_ms',
help: 'Synchronization latency in milliseconds',
buckets: [10, 50, 100, 200, 500, 1000]
}),
syncErrors: new Counter({
name: 'sync_errors_total',
help: 'Total synchronization errors'
})
};
4.2 Logging Implementation
const logger = winston.createLogger({
level: 'info',
format: winston.format.json(),
defaultMeta: { service: 'migration-service' },
transports: [
new winston.transports.File({ filename: 'error.log', level: 'error' }),
new winston.transports.File({ filename: 'combined.log' })
]
});
5. Deployment Strategy
5.1 Ramp-Up Plan
Start with 1% traffic to modern platform
Monitor error rates and latency
Increase by 5% weekly if metrics are stable
Rollback plan if error rate exceeds 0.1%
5.2 Deployment Configuration
apiVersion: apps/v1
kind: Deployment
metadata:
name: migration-service
spec:
replicas: 3
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 0
6. Testing Requirements
6.1 Test Cases
Status transition validation
Data consistency checks
Latency monitoring
Error handling verification
Recovery procedures
Security validation
6.2 Test Data Generation
function generateTestData(count) {
return Array.from({ length: count }, (_, i) => ({
provisionId: `test_${i}`,
status: 'RECEIVED',
timestamp: new Date().toISOString()
}));
}
7. Rollback Procedures
7.1 Emergency Rollback
async function emergencyRollback(batchId) {
await stopIncomingTraffic();
await revertDatabaseChanges(batchId);
await notifyTeam();
await switchToLegacySystem();
}
8. Security Considerations
8.1 Data Encryption
const crypto = require('crypto');
function encryptSensitiveData(data) {
const cipher = crypto.createCipher('aes-256-gcm', process.env.ENCRYPTION_KEY);
let encrypted = cipher.update(data, 'utf8', 'hex');
encrypted += cipher.final('hex');
return encrypted;
}
Contact Information
Technical Lead: [Contact Information]
Database Team: [Contact Information]
Security Team: [Contact Information]
Operations Team: [Contact Information]
Last updated
Was this helpful?