Data Pipeline

Key components and roles:

  1. Data Sources Layer:

    • Transactional Databases

    • Token Vault

    • Audit Logs

    • Operational Metrics

    • Real-time Event Streams

  2. Data Pipeline: A. Data Ingestion

    • Batch ETL for historical data

    • Stream processing for real-time data

    • Data validation and quality checks

    B. Data Warehouse

    • Transaction Mart

    • Tokenization Mart

    • Financial Mart

    • Operational Mart

    C. Data Lake

    • Raw data preservation

    • Data transformation

    • Analytics preparation

  3. Analytics & Reporting: A. Internal Reporting

    • Operational BI

    • Financial Analytics

    • Risk & Compliance

    • Executive Dashboards

    B. External Reporting

    • Merchant Portal

    • Client APIs

    • Partner Dashboards

    C. Real-time Analytics

    • Monitoring Dashboards

    • Fraud Detection

    • Transaction Monitoring

  4. Delivery Layer: A. Access Control

    • Role-based access

    • Data governance

    • Security controls

    B. Distribution

    • Scheduled reports

    • Automated notifications

    • Data export capabilities

    C. Presentation

    • Web portals

    • Mobile applications

    • API endpoints

Key Features:

  1. Data Processing:

    • Real-time processing

    • Batch processing

    • Data enrichment

    • Data quality management

  2. Security:

    • Data encryption

    • Access controls

    • Audit logging

    • Data masking

  3. Customization:

    • Custom reports

    • Configurable dashboards

    • Flexible export options

    • API integration

  4. Performance:

    • Caching strategies

    • Query optimization

    • Load balancing

    • Scalability

Last updated

Was this helpful?