Common Amazon SageMaker Endpoint usage patterns

Common Amazon SageMaker Endpoint usage patterns with real-world scenarios:

  1. Real-Time Product Recommendations (E-commerce)

pythonCopy# API Gateway endpoint calling Lambda function
def lambda_handler(event, context):
    runtime = boto3.client('sagemaker-runtime')
    user_data = {
        "user_id": event['user_id'],
        "recent_views": event['product_history'],
        "cart_items": event['cart']
    }
    
    response = runtime.invoke_endpoint(
        EndpointName='recommendation-endpoint',
        ContentType='application/json',
        Body=json.dumps(user_data)
    )
    
    recommendations = json.loads(response['Body'].read())
    return {
        'statusCode': 200,
        'body': recommendations
    }
  1. Fraud Detection (Financial Services)

  1. Image Processing (Content Moderation)

  1. Natural Language Processing (Customer Service)

Common Deployment Patterns:

  1. Multi-Model Endpoints

  1. Auto-scaling Configuration

  1. A/B Testing with Production Variants

Best Practices:

  1. Monitoring Setup

  1. Error Handling

These patterns show how SageMaker endpoints are typically used in production environments. The key is to:

  • Set up proper monitoring and scaling

  • Implement robust error handling

  • Use cost-effective deployment strategies

  • Enable A/B testing when needed

  • Integrate with other AWS services for complete solutions

Last updated

Was this helpful?